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Abstract—Cognitive radio is a promising technology which 
provides a novel way to improve utilization efficiency of 
available electromagnetic spectrum.Spectrum sensing is one 
of the most important elements in cognitive radio networks. It 
allows cognitive users to autonomously identify unused 
portions of the radio spectrum, and thus avoid interference to 
primary users.In this work, energy detection technique, a 
preferred approach for spectrum sensing in cognitive radio 
due to its simplicity and applicability, is considered. Energy 
detection sensitivity and performance drops quickly with the 
increment of average noise power fluctuation and becomes 
worse in low signal-to-noise ratio. In this paper a dynamic 
threshold energy detection algorithm, in which two threshold 
levels are used, is presented. These thresholds are used to 
maximize the probability of detection and minimize the 
probability of false alarm. Simulation results show that 
detection sensitivity and performance improves as the dynamic 
threshold factor increasing. 
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1. INTRODUCTION 

Nowadays the growing demand of wireless applications has 
put a lot of constraints on the usage of available radio 
spectrum which is limited and precious resource. However, a 
fixed spectrum allocation has lead to underutilization of the 
spectrum as a great portion of licensed spectrum is not 
effectively utilized. Recent studies reveal that the usage of 
radio spectrum experiences significant fluctuations [1]. These 
studies conclude that heavy spectrum utilization often takes 
place in unlicensed bands (e.g., Industrial Scientific and 
Medical band, ISM), while licensed bands often experiences 
low (e.g., TV bands) or medium (e.g., cellular bands) 
utilization. This sub-optimal spectrum utilization opens new 
ways to spectrum access by exploiting unused spectrum bands. 
Cognitive radio (CR) [2] has emerged as a promising solution 
that can effectively address the existing conflicts between 
spectrum demand growth and spectrum underutilization. CR 
aims at improving spectrum usage efficiency by allowing 

some unlicensed (secondary) users (SU) to access in an 
opportunistic and non-interfering manner on some licensed 
bands temporarily unoccupied by the licensed (Primary) users 
(PU). 

Spectrum sensing allow SUs to autonomously detect the 
unused spectrum bands instantaneously and continually 
without the need of primary system intervention. Some 
popular methods of spectrum sensing are energy detection, 
cyclostationary detection and matched filter detection [3]. 
Matched filter and cyclostationary feature techniques both 
require prior information of PU and implementation is 
complex, while energy detector does not require PU 
information, easy to implement. Energy detector performance 
is very susceptible to changing noise power levels, small 
fluctuations in noise power may result in a sharp decline in 
detection performance due to SNR walls [4]. Most papers [5-
8] discussed energy detection scheme based on a given 
constant noise power. However, the noise can be arise from 
various sources like quantization noise, interference between 
users, thermal noise, leakage of signals,etc. Therefore, it is not 
practical that the average noise power keeps constant in 
detection duration; hence the noise uncertainty is unavoidable. 
For those reasons, a new energy detection algorithm based on 
dynamic threshold is presented. 

The rest of this paper is organized as follows: In section II we 
formulate the spectrum sensing problem. Section III reviews 
the classical fixed threshold energy detector & behavior under 
noise uncertainty. In section IV dynamic threshold algorithm 
is presented. Simulation results are presented in section V and 
the conclusions are drawn in section VI. 

2. SPECTRUM SENSING PROBLEM 
FORMULATION 

Assume the primary signal is independent of the noise. 
Spectrum sensing problem can be modeled as the binary 
hypothesis testing problem, where the state of the PU is 
defined by the following two hypothesis:     
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𝐻𝐻0 ∶ 𝑌𝑌(𝑛𝑛) = 𝑊𝑊(𝑛𝑛)                  (PU absent) 

 𝐻𝐻1 ∶ 𝑌𝑌(𝑛𝑛) = 𝑋𝑋(𝑛𝑛) + 𝑊𝑊(𝑛𝑛)(PU present)         (1) 

n=1, 2… N where 𝑌𝑌(𝑛𝑛), 𝑊𝑊(𝑛𝑛)and 𝑋𝑋(𝑛𝑛) corresponds to the 
samples of the received signal, samples of the white noise and 
samples of the primary signal, respectively. Noise samples 
𝑊𝑊(𝑛𝑛) are from AWGN process with variance 𝜎𝜎𝑛𝑛2  i.e. 
𝑊𝑊(𝑛𝑛)~𝒩𝒩(0,𝜎𝜎𝑛𝑛2) and N is number of the received signal 
samples collected to carry out the detection process. A missed 
detection occurs when a PU is present in the sensed band and 
the spectrum sensing algorithm selects hypothesis 𝐻𝐻0. A false 
alarm occurs when the sensed band is idle and the spectrum 
sensing algorithm selects hypothesis 𝐻𝐻1. So the performance 
of any spectrum sensing algorithm can be summarized by 
means of two probabilities: the probability of detection 
𝑃𝑃𝑑𝑑 = 𝑃𝑃𝑟𝑟(𝐻𝐻1/𝐻𝐻1) and the probability of false alarm𝑃𝑃𝑓𝑓𝑓𝑓 =
𝑃𝑃𝑟𝑟(𝐻𝐻1/𝐻𝐻0). Large 𝑃𝑃𝑑𝑑  and low 𝑃𝑃𝑓𝑓𝑓𝑓  values wood be desirable for 
good CR performance. 

3. SYSTEM MODEL 

3.1 Fixed threshold energy detector 

If we have knowledge about the average power of the signal 
𝑋𝑋(𝑛𝑛) only then energy detector is the best choice for optimal 
detection, the test statistics is given by 

𝐷𝐷(𝑌𝑌) =  
1
𝑁𝑁
�𝑌𝑌2(𝑛𝑛)
𝑁𝑁−1

𝑛𝑛=0

𝐻𝐻1
≷
𝐻𝐻0

 𝛾𝛾                            (2) 

Where 𝐷𝐷(𝑌𝑌) is the decision variable and 𝛾𝛾 is the decision 
threshold. The test statistics follows a central (under 
hypothesis 𝐻𝐻0) and non-central (under hypothesis𝐻𝐻1) chi-
square distribution with N degrees of freedom [9]. In low SNR 
regimes, the number of samples used for good detection is 
large enough (N >> 1). So we can make use of central limit 
theorem to approximate the test statistics as Gaussian 
distribution as follows: (provided the noise variance is known 
and noise uncertainty is null) [4] [10]. 

𝐷𝐷(𝑌𝑌)~ �𝒩𝒩(𝜎𝜎𝑛𝑛2, 2𝜎𝜎𝑛𝑛4/𝑁𝑁)                                𝐻𝐻0
𝒩𝒩(𝑃𝑃 + 𝜎𝜎𝑛𝑛2, 2(𝑃𝑃 + 𝜎𝜎𝑛𝑛2)2/𝑁𝑁            𝐻𝐻1

�           (3) 

 
Where P is the average signal power, 𝜎𝜎𝑛𝑛2 is the noise variance. 
If only AWGN noise is considered, then, we can obtain the 
detection probability 𝑃𝑃𝐷𝐷, false alarm probability 𝑃𝑃𝐹𝐹𝐹𝐹 and 
missing probability 𝑃𝑃𝑀𝑀𝐷𝐷 , respectively [4] [10]: 

𝑃𝑃𝐷𝐷 = 𝑃𝑃𝑟𝑟(𝐷𝐷(𝑌𝑌) > 𝛾𝛾|𝐻𝐻1)= 𝑄𝑄 � 𝛾𝛾−(𝑃𝑃+ 𝜎𝜎𝑛𝑛2) 
�2/𝑁𝑁 (𝑃𝑃+ 𝜎𝜎𝑛𝑛2) 

� (4) 

𝑃𝑃𝐹𝐹𝐹𝐹 = 𝑃𝑃𝑟𝑟(𝐷𝐷(𝑌𝑌) > 𝛾𝛾|𝐻𝐻0) = 𝑄𝑄 � 𝛾𝛾− 𝜎𝜎𝑛𝑛2

�2/𝑁𝑁𝜎𝜎𝑛𝑛2
� (5) 

𝑃𝑃𝑀𝑀𝐷𝐷 = 1 −  𝑃𝑃𝐷𝐷=1 − 𝑄𝑄 � 𝛾𝛾−(𝑃𝑃+ 𝜎𝜎𝑛𝑛2)
�2/𝑁𝑁 (𝑃𝑃+ 𝜎𝜎𝑛𝑛2)

� (6)  

Where 𝑄𝑄(. )is the standard Gaussian complementary 
cumulative distribution function (CDF).  Computing 𝛾𝛾 in 
terms of 𝑃𝑃𝐷𝐷&𝑃𝑃𝐹𝐹𝐹𝐹 from (5) we get, 

  𝛾𝛾 = 𝜎𝜎𝑛𝑛2 �1 + 𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹)�2 𝑁𝑁⁄ � (7) 

Where 𝑄𝑄−1(. ) is the inverse standard Gaussian 
complementary CDF.N is expressed in terms of 𝑃𝑃𝐷𝐷 , 𝑃𝑃𝐹𝐹𝐹𝐹 and 
SNR from (4), (5) 

𝑁𝑁 = 2[𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹) − 𝑄𝑄−1(𝑃𝑃𝐷𝐷)(1 + 𝑆𝑆𝑁𝑁𝑆𝑆)]2𝑆𝑆𝑁𝑁𝑆𝑆−2 (8) 

 SNR=𝑃𝑃 𝜎𝜎𝑛𝑛2⁄ is the signal to noise ratio. It may note that the 
expression of N in (7) is free from variable  𝛾𝛾(decision 
threshold). This shows that if the noise power 𝜎𝜎𝑛𝑛2 were 
completely known, then signals could be detected at arbitrarily 
low SNRs by increasing the sensing time N. 

3.2 Noise uncertainty 

We have discussed and analyzed the case without noise 
uncertainty. Now we take the noise uncertainty into account. 
The distributional uncertainty of noise can be included in a 
single interval 𝜎𝜎2𝜖𝜖[𝜎𝜎𝑛𝑛2 𝜌𝜌⁄ ,𝜌𝜌𝜎𝜎𝑛𝑛2] as shown in  

 

Fig. 1: Noise uncertainty for energy detector 

fig. 1, where𝜌𝜌is the noise uncertainty factor and the value of 𝜌𝜌 
is closer to 1, that is 𝜌𝜌> 1 and 𝜌𝜌 ≈ 1. Thus (4) and (5) are 
modified to get 

𝑃𝑃𝐹𝐹𝐹𝐹=
𝑚𝑚𝑓𝑓𝑚𝑚

𝜎𝜎2𝜖𝜖[𝜎𝜎𝑛𝑛2 𝜌𝜌⁄ ,𝜌𝜌𝜎𝜎𝑛𝑛2] 𝑄𝑄 � 𝛾𝛾− 𝜎𝜎2

�2/𝑁𝑁𝜎𝜎2�= 𝑄𝑄 � 𝛾𝛾− 𝜌𝜌𝜎𝜎𝑛𝑛2

�2/𝑁𝑁𝜌𝜌𝜎𝜎𝑛𝑛2
�  (9) 

𝑃𝑃𝐷𝐷= 𝑚𝑚𝑚𝑚𝑛𝑛
𝜎𝜎2𝜖𝜖[𝜎𝜎𝑛𝑛2 𝜌𝜌⁄ ,𝜌𝜌𝜎𝜎𝑛𝑛2]𝑄𝑄 �

𝛾𝛾−�𝑃𝑃+ 𝜎𝜎2�
�2 𝑁𝑁⁄ (𝑃𝑃+ 𝜎𝜎2)

�  

= 𝑄𝑄 � 𝛾𝛾−(𝑃𝑃+ 𝜎𝜎𝑛𝑛2/𝜌𝜌) 
�2/𝑁𝑁 (𝑃𝑃+ 𝜎𝜎𝑛𝑛2/𝜌𝜌) 

� (10) 
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Eliminating 𝛾𝛾 and it has: 

 𝑁𝑁 =
2[𝜌𝜌𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹) − �1 𝜌𝜌� + 𝑆𝑆𝑁𝑁𝑆𝑆�𝑄𝑄−1(𝑃𝑃𝐷𝐷)]2

(𝑆𝑆𝑁𝑁𝑆𝑆 − (𝜌𝜌 − 1 𝜌𝜌� ))2
          (11) 

Energy detection algorithm with fixed threshold offers 
degraded performance with noise uncertainty. This indicates 
that the choice of a fixed threshold is no longer valid under 
noise uncertainty and threshold should be chosen flexible. In 
next section, energy detection algorithm with dynamic 
threshold is presented. 

4. DYNAMIC THRESHOLD ALGORITHM 

Because of noise uncertainty, performance decline quickly and 
introduces cognitive user interference to the licensed users. 
For this reason, we present a dynamic threshold algorithm 
here. 

Assuming 𝜌𝜌′ is the dynamic threshold factor and𝜌𝜌′ > 1 
and𝜌𝜌′ ≈ 1. 𝜌𝜌′ is introducing in such a way that threshold 𝛾𝛾 lie 
in the interval [𝛾𝛾 𝜌𝜌′⁄ ,𝜌𝜌′𝛾𝛾], instead of remaining constant [11]. 
Here, we will consider the noise uncertainty and dynamic 
threshold respectively. From (9) and (10), it has: 

𝑃𝑃𝐷𝐷 =
𝑚𝑚𝑚𝑚𝑛𝑛

𝛾𝛾 ′𝜖𝜖 �
𝛾𝛾
𝜌𝜌′

,𝜌𝜌′𝛾𝛾�

𝑚𝑚𝑚𝑚𝑛𝑛

𝜎𝜎2𝜖𝜖[
𝜎𝜎𝑛𝑛2

𝜌𝜌
,𝜌𝜌𝜎𝜎𝑛𝑛2] 𝑄𝑄�

𝛾𝛾 ′ − (𝑃𝑃 + 𝜎𝜎2)

�2 𝑁𝑁⁄ (𝑃𝑃 + 𝜎𝜎2)
� 

=  𝑄𝑄 �
𝛾𝛾/𝜌𝜌′ − (𝑃𝑃 + 𝜎𝜎𝑛𝑛2 𝜌𝜌⁄ )

�2 𝑁𝑁⁄ (𝑃𝑃 + 𝜎𝜎𝑛𝑛2 𝜌𝜌⁄ )
� (12) 

𝑃𝑃𝐹𝐹𝐹𝐹 =
𝑚𝑚𝑓𝑓𝑚𝑚

𝛾𝛾 ′𝜖𝜖 �
𝛾𝛾
𝜌𝜌′

,𝜌𝜌′𝛾𝛾�

𝑚𝑚𝑓𝑓𝑚𝑚

𝜎𝜎2𝜖𝜖[
𝜎𝜎𝑛𝑛2

𝜌𝜌
,𝜌𝜌𝜎𝜎𝑛𝑛2] 𝑄𝑄 �

𝛾𝛾 ′ −  𝜎𝜎2

�2/𝑁𝑁𝜎𝜎2
� 

= 𝑄𝑄 �𝜌𝜌
′𝛾𝛾−𝜌𝜌  𝜎𝜎𝑛𝑛2

�2/𝑁𝑁𝜌𝜌𝜎𝜎𝑛𝑛2
� (13) 

Eliminating 𝛾𝛾, and computing the value of N in terms of 
𝑃𝑃𝐷𝐷 ,𝑃𝑃𝐹𝐹𝐹𝐹 ,𝜌𝜌,𝜌𝜌′ and  

SNR𝑁𝑁 = 2 [�𝜌𝜌 𝜌𝜌 ′⁄ �𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹 )−𝜌𝜌 ′(1 𝜌𝜌+𝑆𝑆𝑁𝑁𝑆𝑆)𝑄𝑄−1(𝑃𝑃𝐷𝐷 )⁄ ]2

(𝜌𝜌 ′𝑆𝑆𝑁𝑁𝑆𝑆+𝜌𝜌 ′ 𝜌𝜌−𝜌𝜌 𝜌𝜌 ′⁄⁄ )2   (14) 

5. SIMULATION RESULTS 

Let us investigate carefully above formulations through 
MATLAB simulations to have deeper illustrative insight into 
different aspects of spectrum sensing technique. 

5.1 Without noise uncertainty 

The probability of false alarm 𝑃𝑃𝐹𝐹𝐹𝐹 ∈ (0, 1.0) has been set to a 
minimum value of 0.01 which may be accepted as negligible. 
In Fig. 2, four sample points with values N=300, 1000, 2500 
and 5000 over the SNR range of -25 to 5 dB are considered. It 
shows that for a fixed value of SNR the probability of 
detection is improved by increasing the number of samples. It 
is also, observed in fig. 2 that as N increases, there is a 
significant increase in 𝑃𝑃𝐷𝐷 even at low values of SNR. 

 

Fig. 2: 𝑷𝑷𝑫𝑫Vs. SNR for different values of N 

Fig. 3 shows the curves which provides the information about 
𝑃𝑃𝐷𝐷 vs. 𝑃𝑃𝐹𝐹𝐹𝐹 for different values of SNR and N=1000. From the 
graph it is inferred that i.) For SNR values at -20 dB, the 𝑃𝑃𝐷𝐷 
becomes almost equal to 𝑃𝑃𝐹𝐹𝐹𝐹 which depicts that energy 
detector becomes non-robust under low SNR. ii.) The 
performance becomes better at higher SNR values as the 𝑃𝑃𝐷𝐷 
increases. 

5.2 With noise uncertainty  

When 𝜌𝜌 ≈ 1, then 𝑆𝑆𝑁𝑁𝑆𝑆−2 ≈ (𝑆𝑆𝑁𝑁𝑆𝑆 − (𝜌𝜌 − 1 𝜌𝜌⁄ ))−2, the 
numerical value of (11) and (8) are almost the same; When 𝜌𝜌 
is larger and suppose 𝜌𝜌 = 1.05, then (𝜌𝜌 − 1 𝜌𝜌⁄ ) =0.0976 ≈ 
0.1, if SNR= 0.1, well then (𝑆𝑆𝑁𝑁𝑆𝑆 − (𝜌𝜌 − 1 𝜌𝜌⁄ ))−2 ≈ 0, 
substituting into equation (11) to be N→ ∞. In other words 
only an infinite detection duration can complete detection, 
which is impracticable. 

A tiny fluctuation of average noise power causes performance 
drop seriously, especially with a lower SNR. Fig. 4 is the 
numerical results of (11) given: SNR= -10dB, 𝑃𝑃𝐹𝐹𝐹𝐹 ∈ (0,0.05) 
and N = 1000. 

In Fig. 4 𝜌𝜌=1.00 represents no noise uncertainty. We can see 
that the performance gradually drops as the noise uncertainty 
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factor increasing. When 𝜌𝜌=1.05, the performance dropped 
seriously. 

 

Fig. 3: 𝑷𝑷𝑫𝑫Vs. 𝑷𝑷𝑭𝑭𝑭𝑭 for different values of SNR 

 

Fig. 4:  ROC curves of energy detection scheme with different 𝝆𝝆 

For example, if 𝑃𝑃𝐹𝐹𝐹𝐹=0.1, then 𝑃𝑃𝐷𝐷< 0.15, even when 𝑃𝑃𝐹𝐹𝐹𝐹=0.5, 
𝑃𝑃𝐷𝐷 is still less than 50%. It means that rental users decide the 
spectrum is idle no matter whether there are primary users 
present. This indicates that Energy detector is very sensitive to 
noise uncertainty. In order to guarantee a good performance, 
dynamic threshold is chosen. 

5.3 With Dynamic Threshold 

In (14), when 𝜌𝜌′ ≈ 𝜌𝜌and𝜌𝜌′ 𝜌𝜌⁄ ≈  𝜌𝜌 𝜌𝜌′ ≈ 1⁄ , then(𝜌𝜌′𝑆𝑆𝑁𝑁𝑆𝑆 +
𝜌𝜌′ 𝜌𝜌⁄ − 𝜌𝜌 𝜌𝜌′)⁄ −2 ≈ (𝑆𝑆𝑁𝑁𝑆𝑆)−2 and 𝜌𝜌′(1 𝜌𝜌 + 𝑆𝑆𝑁𝑁𝑆𝑆⁄ ) ≈ (1 +
𝑆𝑆𝑁𝑁𝑆𝑆),the numerical value of (14) is almost the same to (8). 
Therefore, dynamic threshold detection algorithm can 

overcome the noise uncertainty as long as a suitable dynamic 
threshold factor is chosen. Comparing (14) with (11), let 
SNR= 0.1 and𝜌𝜌′ = 𝜌𝜌 ≈ 1, it is clear that(𝜌𝜌′𝑆𝑆𝑁𝑁𝑆𝑆 + 𝜌𝜌′ 𝜌𝜌⁄ −
𝜌𝜌 𝜌𝜌′)⁄ −2 ≫ (𝑆𝑆𝑁𝑁𝑆𝑆 − (𝜌𝜌 − 1 𝜌𝜌⁄ ))−2. Therefore, to achieve the 
same detection performance, the detection duration N of 
dynamic threshold detection scheme is significantly shorter. 
Fig. 5 is the numerical results of (8), (11) and (14). With the 
same parameters as before. 

Where 𝜌𝜌 = 1.00 denotes that the average noise power keeps 
constant means without noise uncertainty; 𝜌𝜌′ = 1.00 denotes 
that the algorithm did not use dynamic threshold means the 
threshold is fixed; otherwise, it represents cases with noise 
uncertainty and dynamic threshold. It is shown in Fig. 5 that 
the dynamic threshold makes the performance more accurate 
as the dynamic threshold is increasing. This method 
significantly increases the robustness against noise average 
power fluctuation without increasing the detection duration. 

 

Fig. 5: ROC curves of energy detection scheme with different 𝝆𝝆 
and 𝝆𝝆′ 

6. CONCLUSION 

In this paper, the relationship of energy detection performance 
with detection duration, detection sensitivity and noise 
average power fluctuation is analyzed. A fractional fluctuation 
of average noise power will lead to the quick drop of spectrum 
detection performance. So to overcome this drawback, a new 
energy detection algorithm based on dynamic threshold is 
presented. This algorithm leads to an accurate detection 
performance even if there is a serious noise uncertainty in the 
case of low SNR. This scheme can enhance the robustness of 
combatting noise uncertainty and improve the capacity of 
spectrum sensing. How to acquire the practical noise 
uncertainty factor and detection threshold is our future work. 
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